Parameters can be passed between forms using:

1) CALL_FORM
2) NEW_FORM

3) OPEN_FORM

Parameters can also be used to pass parameter to other Oracle products such as Oracle REPORTS
4) Run_Report_Object()

HOW TO PASS PARAMETER WITH SINGLE QUOTE FROM FORMS TO REPORTS

And from one form to another form using a
5) menu item

instead of a regular push button.

To do this you can use:
1) The Default Parameter List

Each form includes a built-in parameter List named Default. The Default parameter List contains all of the form parameters that were defined in the form at design time. For example, if you define parameters p1, p2, and p3 in Form A at design time, they are automatically included in the Default parameter List for Form A.

The Default parameter List can be passed to a called form by including it in the argument List of the OPEN_FORM, CALL_FORM, or NEW_FORM built-in procedures.

DECLARE
 the_List PARAMLIST:= Get_Parameter_List('default');
BEGIN
 Open_Form('form_B',ACTIVATE, NO_SESSION,'default');
END;

To create a parameter follow the step
[image: image1.png]\ il E3
@ Oracle Forms Builder - MODULE3
File Edit View Layout Program Debug Tools Window Help

DSHE | XBE ||| o v

[+ x &= | @ 2 [S
I e
hiooues

4 Name

PARAMETER2
 Subdiass Information

= Comments
-IData

‘%@ml‘x-&

 Parameter Data Type
 Parameter Infal Value

QLB_0B1106

QOBLE STANPE

kil

General

Mod: MODULE3 File: MODULE3 [|
& @ | € orderor. [= a o " WE
el <] = @ | Bep FEY |

1) In the Object Navigator, select the Parameters node and choose

 NAVIGATOR->CREATE.

2) Bring up the properties of the parameter and set the properties as needed.

 For example, Set the datatype, default value, and name of the parameter.

3) To access the value of the parameter, add the reserved word PARAMETER

 as a prefix to the parameter name. If you need to assign a value to

 a parameter, use a regular assignment statement such as:

 temp_var := :parameter.variab;
-- assigns the value of the parameter to test_var
 :parameter.Variab := 'value';
 -- assigns a value 'value' to the parameter
Whenever you create a regular parameter, it is actually added to a default

parameter list.
All parameters that you define in the Object Navigator belong to the default

parameter list. You can also pass the default parameter list to another

form if you need. For example:

WHEN-BUTTON-PRESSED

BEGIN

 CALL_FORM('test', NO_HIDE, DO_REPLACE, NO_QUERY_ONLY, 'default');

END;

When passing the default parameter list as well as any other parameter list,

make sure that every parameter exists with the same name in the called

form.

2) Own parameter list
You can also create your own parameter list programmatically and pass it as an argument in a CALL_FORM or OPEN_FORM or Report
You can use the following built-in subprograms to create and manipulate a parameter List:

ADD_PARAMETER

CREATE_PARAMETER_LIST

DELETE_PARAMETER

DESTROY_PARAMETER_LIST

GET_PARAMETER_ATTR

GET_PARAMETER_LIST

SET_PARAMETER_ATTR

Tip: Keep in mind the following when you create parameter Lists:

· CREATE_PARAMETER_LIST is a function whose return value is the ID of the List being created. You must assign the ID to a variable that you declared as type PARAMLIST (an Oracle Forms data type).

· A call to CREATE_PARAMETER_LIST creates a parameter List that does not yet contain any parameters. To add parameters to the List, execute the ADD_PARAMETER procedure.

· GET_PARAMETER_ATTR and SET_PARAMETER_ATTR can be used to get and set the type and value of a parameter that has been added to a parameter List with the ADD_PARAMETER built-in. Do not use these built-ins to get or set the value of a form parameter that was defined at design time; instead, refer to the parameter using bind variable syntax or indirect reference.

· GET_PARAMETER_LIST is a function that returns the ParamList ID of an indicated parameter List, similar to the FIND-* functions available for other object types.

The following example creates a parameter List, adds two parameters to it, and then passes the List to a form by way of the CALL_FORM procedure:

/*
** Declare a variable of type ParamList to store
** the parameter List ID
*/
DECLARE
List_id ParamList;
BEGIN
/*
** Create a parameter List named "input_params"
*/
List_id := Create_Parameter_List('input_params');

/*
** Add two parameters to the List to pass values for each

One way to use a parameter list is to pass the value of a text item

that is used as a search criterion when calling another form.
Another example is to pass a value to a report parameter that is used in

the WHERE clause to retrieve only certain rows.

Suppose you need to pass the department number from one form (department) to another form (employee);

you use the department number to query all employees working in that

department in the employee form.
You can execute the following code from

a When-Button-Pressed trigger or even from a menu item:

DECLARE

 List_id ParamList;

BEGIN

 List_id:= GET_PARAMETER_LIST('input_params');

 IF NOT ID_NULL(param_list_id) THEN

 DESTROY_PARAMETER_LIST(list_id);

 END IF;

 List_id := Create_Parameter_List('input_params');

 ADD_PARAMETER(list_id, 'emp_query', TEXT_PARAMETER, :deptno);

 CALL_FORM('employee', NO_HIDE, DO_REPLACE, NO_QUERY_ONLY, list_id);

END;

1) You must declare an object of type ParamList
2) Use the GET_PARAMETER_LIST built-in to find out if the parameter already exists. If it exists, destroy it and recreate it. You can use the DESTROY_PARAMETER_LIST built-in to delete a parameter list.

3) You can then add one or more parameters to the parameter list.

The ADD_PARAMETER requires the following arguments:

-- The parameter list id, or parameter name

-- The name of the parameter being created

-- The parameter type

-- The parameter value

In the example above, 'emp_query' is the name of the parameter, TEXT_PARAMETER is

the parameter type, and :deptno is the value of the parameter. : emp_query gets

the value from a text item called deptno. Most of the parameters that you add

are of the type TEXT_PARAMETER, unless you try to pass a record group.

Record group parameters must be defined as DATA_PARAMETER instead of

TEXT_PARAMETER.
To access the value of a parameter in a called form, you must create the

following triggers in the employee form:

1) WHEN-NEW-FORM-INSTANCE at the form level

2) PRE-QUERY trigger at the block level

Or

3) in a WHEN-NEW-FORM-INSTANCE at the form level

a. Default_where
b. one_time_where

In addition, create a parameter with the same name as the parameter

that you are passing in the parameter list :emp_query.
The application returns an error message that the parameter does not exist.
The following is an example of two triggers needed to do a query based on the

value passed in the parameter list when the form 'employee' is called:

WHEN-NEW-FORM-INSTANCE in called form at the form level
BEGIN

 EXECUTE_QUERY;

END;

PRE-QUERY in called form at the block level

/* If this is a called form, then, set up the search criteria based /*

/* on the parameter emp_query passed in the parameter list */

BEGIN

:deptno := :parameter.emp_query;

END;
WHEN-NEW-FORM-INSTANCE

with Default_where (or one_time_where) in called form at the form level

BEGIN

IF :PARAMETER. EMP_QUERY is null THEN

Enter_query;

ELSE

Set_Block_Property('EMP',DEFAULT_WHERE,

‘ DEPTNO = '||:PARAMETER.EMP_QUERY);

 ' AND ANNO = '||:PARAMETER.ANNO);

execute_query;

end if;
 END;

How to pass parameters from one form to another form

using a menu item instead of a regular push button.

TO PASS PARAMETERS FROM FORM1 TO FORM2 USING THE MENU ITEM

1) Create form1 e.g. based on xxx table.
We will pass REG_QUERY as the parameter from form1 to form2.

2) Create form2 with a button.

1) Create a parameter under the object navigator of form2.
Let us name that parameter "param1" and make the datatype "Char" in order to match

 REG_QUERY datatype.

4) Create a menu using menudefs.mmb and name it e.g. mymenu

5) Create a menu item and name it "callform2".

6) Under the property of the menu item "callform2", bring the pl/sql editor

 by clicking on the "Menu Item Code". Type the following code:

DECLARE

 param_list_id ParamList;

REG_QUERY
VARCHAR2(50) := 'Miller';

BEGIN

 IF REG_QUERY IS NOT NULL THEN

param_list_id := GET_PARAMETER_LIST('TDOCUMENTO');

IF NOT ID_NULL(param_list_id) THEN

 DESTROY_PARAMETER_LIST('TDOCUMENTO');

END IF;

param_list_id := CREATE_PARAMETER_LIST('TDOCUMENTO');

ADD_PARAMETER(param_list_id, 'REG_QUERY', TEXT_PARAMETER, REG_QUERY;

CALL_FORM (‘form2’,HIDE,DO_REPLACE,NO_QUERY_ONLY,SHARE_LIBRARY_DATA,param_list_id);

DESTROY_PARAMETER_LIST(param_list_id);

 END IF;

END;

7) Save the menu and compile it to create the mmx.

8) Open the properties of the form level of form1 in order to assign the menu.

 Under "Menu Module", type your menu that you have just modified "mymenu".

9) Under form2, create WHEN-NEW-FORM-INSTANCE trigger with the following code:

 BEGIN

 MESSAGE(REG_QUERY);

 MESSAGE(‘’);

 END;

10) Save form2 and compile it to create the fmx.

11) Go back to your form1 and run it

 For instance, we would like to pass "Miller" as our parameter . REG_QUERY from

 form1 to form2.

12) Go to the menu item "callform2" in form1 and click on that menu item in

 order to pass REG_QUERY parameter e.g. "Miller".

 When you get form2, that will display the parameter

 that was passed from form1.
3) To Call Reports with a Parameter Form

How to Access the Value of a Parameter in a report (run_report_object())
DECLARE

id_pl

ParamList := NULL;

v_repid

REPORT_OBJECT;

param_list_name
VARCHAR2(30) := 'para_lista';

v_rep

VARCHAR2(100);

NREPORT

VARCHAR2(30) := ‘myreport’;

MYWHERE

VARCHAR2(300) := ‘’;

INTESTA_RP

VARCHAR2(300) := ‘’;

BEGIN

 v_repid
:= find_report_object(NREPORT);

Id_pl

:= GET_PARAMETER_LIST(param_list_name);

IF NOT ID_NULL(Id_pl) THEN
DESTROY_PARAMETER_LIST(Id_pl);
END IF;

id_PL

:= CREATE_PARAMETER_LIST(param_list_name);

--

ADD_PARAMETER(ID_PL, 'PARAMFORM',
TEXT_PARAMETER, 'NO');

ADD_PARAMETER(ID_PL, 'MYWHERE',
TEXT_PARAMETER, MYWHERE);

ADD_PARAMETER(ID_PL, 'INTESTA_RP', TEXT_PARAMETER, INTESTA_RP);

V_REP := run_report_object(v_repid,id_PL);
In addition, create a parameters with the same name as the parameter

that you are passing in the parameter list: MYWHERE and INTESTA_RP.
In Report builder

Open up the Property Inspector of user parameter MYWHERE and specify the following:
[image: image2.png]ilder

File Edit View Insert Format Layout Program Tools Window Help

DSH |88 & xBE || gE|

=

X ~| Find

+ |5 Reports
x | = AMODULEL
. @ Data Model
System Parameters
User Parameters
» 5
Queries
Groups
Formula Colurnns
Surmmary Colurnns
Placeholder Columns
Data Links
[Web Source
B} Paper Layout
& Paper Parameter Form
Report Triggers
C1-Program Units
[Attached Libraries
[Templates
(1 PL/SQL Libraries
(1 Debug Actions
[Stack
Built-in Packages
Database Objects

o
o
o
o
o
o

b2

0158 2 e[%3]

User Parameter: P_1

= General Information

@ Name

@ Comments

= Parameter

4 Datatype

@ Width

a Input Mask

a Initial Value

4 Validation Trigger

a Listof Values

= Connection

@ Type of Pluggable Data Source

 Name: MYWHERE
 Datatype: CHAR
 Width: 300
 Initial value: AND DEPTNO = ‘10’ (It can be any valid value)
Same for user parameter INTESTA_RP
HOW TO PASS PARAMETER WITH SINGLE QUOTE FROM FORMS TO REPORTS
How do you pass a parameter that contains single quotes

from Oracle Forms to Oracle Reports?

Example

How do you store the parameter 'test', not test, in the database?

Hence, in order for the report to work, the parameter must appear

in the Parameter Form as 'test'.

Use sets of 3 single quotes around the string literal.

Example

'''test'''

This appears as 'test' in the Parameter Form.

ORA-907 or ORA-12802 when using quote in the parameter

A report has to be used in web application. It has a parameter that includes

quote signs like this : 'value1','value2',...,'valueN'

Following problems occurred running it as web application :

1. when using single quotes for the list of initial values:

 -> ora-907

2. when using no quotes at all for the list of initial values:

-> ORA-12801 & ORA-1462

3. when using double quotes for each value in the list of initial values:

 -> no initial values given in Parameterform

4. The only way to get it working in web reports only:

 add double quotes in front and at the end of the parameter list

Other one possible workaround is to use following trigger :

 Reports Trigger

 After Parameter Form)

 function AfterPForm return boolean is

 begin

 :my_empname:=chr(39)||:my_param||chr(39);

 return (TRUE);

end;
 By implementing the code in the afterParameterForms trigger

 ": my_param:=chr(39)||:my_empname||chr(39);" adds quotes

 and which becomes finally double quotes

Another
In a Form which will call a report with some parameters. You find that if the text parameter contains "'", You will get the following errors in the log of reports background engine.

REP-0159 : Syntax error on command line
Error Submitting report

You can't use that as it's an illegal character.
What you do is put a little code in so as to change all apostrophes into their MIME equivalent. This must also be done for the percent sign (%) and others which might be considered illegal in an URL. The percent sign is the escape character in MIME so putting it in an URL results in whatever else is after it to be considered an escape character in HEX which causes problems.

In short, replace all ' in your URL sent to the Report Server with %27. If you're wondering, the escape code for the percent sign is %25.

In the future, any other illegal characters, just replace the character with %hex where hex is the hex code for the ASCII character.

--

HOW TO EMBED SINGLE QUOTE IN STRING

How do you embed single quotes (') into a character string?

How do you concatenate a quote in SQL?

How do you place quotes around a character string in a SQL query?

How do you store an apostrophe into a character variable in PL/SQL?

 Example 1

When you issue either of the following SELECT statements:

SQL> SELECT ' FROM dual;

SQL> SELECT ''' FROM dual;

the following error occurs:

ORA-01756: quoted string not properly terminated

Example 2

When you issue the following SELECT statement:

SQL> SELECT ''character string in quotes'' FROM dual;

the following error occurs:

ORA-00923: FROM keyword not found where expected

Solution Description:

To create a single quote, concatenate CHR(39) to the string.

 CONCATENATE CHR(39) TO CREATE LITERAL SINGLE QUOTE

Example 1

SQL> SELECT 'test' || CHR(39) || 'case' result FROM dual;

RESULT

test'case

Example 2

SQL> SELECT CHR(39) c FROM dual;

C

-

'

To return the ASCII value of the single quote ('):

SQL> SELECT ASCII('''') FROM dual;

ASCII('''')

 39

USE 2 SINGLE QUOTES TO CREATE 1 SINGLE QUOTE

Keep the following two rules in mind:

1. Enclose every character string in single quotes.

 The single quote is a string delimiter.

2. Inside a string literal, use two consecutive single quotes

 to create a literal single quote.

Example 1

6 single quotes: SELECT 'test' || '''''' || 'case' c FROM dual;

RESULT

test''case

8 single quotes: SELECT 'test' || '''''''' || 'case' c FROM dual;

RESULT

test'''case

You can also implement the above in the following way:

SELECT 'test''case' c FROM dual;

RESULT

 test'case

SELECT 'test''''case' c FROM dual;

RESULT

 test''case

Hence:

a. To create a single quote, concatenate 4 single quotes: ''''

 The two single quotes in the middle define the single quote.

 The outside single quotes are the single quotes that must

 surround a string.

 Example 2

 SQL> SELECT '''' FROM dual;

 '

 -

 '

 Example 3

 SQL> SELECT 'test' || '''' || 'case' result FROM dual;

 RESULT

 test'case

b. To place single quotes around a character string,

 enclose the character string within 3 single quotes: '''

 At the start of a character string:

 the first single quote defines the start of the character string;

 it is one of the two single quotes that surround the string.

 The second and third single quotes define the literal single quote.

 At the end of the character string:

 the first and second single quotes define the literal single quote.

 The third single quote closes the character string; it is the

 other single quote that surrounds the string.

 Example 4

 SQL> SELECT '''character string in quotes''' result FROM dual;

 RESULT

 'character string in quotes'

More examples:

Example 5

SRW.DO_SQL('SELECT DECODE(dname, ''NONE'', NULL, ''A'')

 FROM dept

 WHERE deptno = 10');

As a result, this is the SELECT statement sent to the database:

 SELECT DECODE(dname, 'NONE', NULL, 'A')

 FROM dept

 WHERE deptno = 10

Example 6

DECLARE

 a VARCHAR2(200);

 q CHAR(1) := '''';

BEGIN

 a := '''this is a ' || q || 'quoted'' string' || q;

END;

String "a" stores:

 'this is a 'quoted' string'

Built-in used (From Oracle Forms ONLine help)
PROCEDURE CALL_FORM
(formmodule_name VARCHAR2,
display NUMBER,
switch_menu NUMBER,
query_mode NUMBER,
data_mode NUMBER,
paramlist_name VARCHAR2);

Parameters

formmodule_name

The name of the called form (must be enclosed in single quotes). Datatype is VARCHAR2.

 display

HIDE (The default.) Oracle Forms will hide the calling form before drawing the called form.
NO_HIDE Oracle Forms will display the called form without hiding the calling form.

switch_menu

NO_REPLACE (The default.) Oracle Forms will keep the default menu module of the calling form active for the called form.

DO_REPLACE Oracle Forms will replace the default menu module of the calling form with the default menu module of the called form.

 query_mode

 NO_QUERY_ONLY (The default.) Oracle Forms will run the indicated form in normal mode, allowing the end user to perform inserts, updates, and deletes from within the called form.

QUERY_ONLY Oracle Forms will run the indicated form in query-only mode, allowing the end user to query, but not to insert, update, or delete records.

 data_mode

NO_SHARE_LIBRARY_DATA (The default.) At runtime, Oracle Forms will not share data between forms that have identical libraries attached (at design time).
SHARE_LIBRARY_DATA At runtime, Oracle Forms will share data between forms that have identical libraries attached (at design time).
paramlist_id

The unique ID Oracle Forms assigns when it creates the parameter list. You can optionally include a parameter list as initial input to the called form. Datatype is PARAMLIST.

paramlist_name

The name you gave the parameter list object when you defined it. Datatype is VARCHAR2.

PROCEDURE OPEN_FORM
(formmodule_name VARCHAR2,
activate_mode NUMBER,
session_mode NUMBER,
data_mode NUMBER,
paramlist_id PARAMLIST);

Parameters:
formmodule_name

The name of the form to open. Datatype is VARCHAR2. Required
 activate_mode

ACTIVATE (The default.) Sets focus to the form to make it the active form in the application.
NO_ACTIVATE Opens the form but does not set focus to the form. The current form remains current.

 session_mode

NO_SESSION (The default.) Specifies that the opened form should share the same database session as the current form. POST and COMMIT operations in any form will cause posting, validation, and commit processing to occur for all forms running in the same session.

SESSION Specifies that a new, separate database session should be created for the opened form.

data_mode

NO_SHARE_LIBRARY_DATA (The default.) At runtime, Oracle Forms will not share data between forms that have identical libraries attached (at design time).

SHARE_LIBRARY_DATA At runtime, Oracle Forms will share data between forms that have identical libraries attached (at design time).

paramlist_name

The name of a parameter list to be passed to the opened form. Datatype is VARCHAR2.

paramlist_id

 The unique ID that Oracle Forms assigns to the parameter list at the time it is created. Use the GET_PARAMETER_LIST function to return the ID to a variable of type PARAMLIST.

PROCEDURE NEW_FORM
(formmodule_name VARCHAR2,
rollback_mode NUMBER,
query_mode NUMBER,
data_mode NUMBER,
paramlist_name VARCHAR2);

Parameters

formmodule_name

Then name of the called form (must be enclosed in single quotes). Datatype is VARCHAR2.

rollback_mode

 TO_SAVEPOINT (The default.) Oracle Forms will roll back all uncommitted changes (including posted changes) to the current form's savepoint.

NO_ROLLBACK Oracle Forms will exit the current form without rolling back to a savepoint. You can leave the top level form without performing a rollback, which means that you retain any locks across a NEW_FORM operation. These locks can also occur when invoking Oracle Forms from an external 3GL program. The locks are still in effect when you regain control from Oracle Forms.

FULL_ROLLBACK Oracle Forms rolls back all uncommitted changes (including posted changes) that were made during the current Runform session. You cannot specify a FULL_ROLLBACK from a form that is running in post-only mode. (Post-only mode can occur when your form issues a call to another form while unposted records exist in the calling form. To avoid losing the locks issued by the calling form, Oracle Forms prevents any commit processing in the called form.)

query_mode

NO_QUERY_ONLY (The default.) Runs the indicated form normally, allowing the end user to perform inserts, updates, and deletes in the form.

QUERY_ONLY Runs the indicated form in query-only mode; end users can query records, but cannot perform inserts, updates or deletes.

data_mode

NO_SHARE_LIBRARY_DATA (The default.) At runtime, Oracle Forms will not share data between forms that have identical libraries attached (at design time).

SHARE_LIBRARY_DATA At runtime, Oracle Forms will share data between forms that have identical libraries attached (at design time).

paramlist_id

The unique ID Oracle Forms assigns when it creates the parameter list. Specify a parameter list when you want to pass parameters from the calling form to the new form. Datatype is PARAMLIST. A parameter list passed to a form via NEW_FORM cannot contain parameters of type DATA_PARAMETER (a pointer to record group).

paramlist_name

The name you gave the parameter list object when you defined it. Datatype is VARCHAR2. A parameter list passed to a form via NEW_FORM cannot contain parameters of type DATA_PARAMETER (a pointer to record group).

FUNCTION RUN_REPORT_OBJECT
(report_name VARCHAR2,
paramlist_id PARAMLIST);

Returns VARCHAR2
Parameters

report_id
 Specifies the unique ID of the report to be run. You can get the report ID for a particular report using the Built-in FIND_REPORT_OBJECT
 report_name
The name of the report object to run.

 paramlist_name
 The name you gave the parameter list object when you defined it. Datatype is VARCHAR2.

 paramlist_id
 The unique ID Oracle Forms assigns when it creates the parameter list. Datatype is PARAMLIST.

